海水魚
氮元素在魚缸中的形態主要是含氮有機物、NH3、N2、NO2-和NO3-。其它的形態主要存在於微生物的體內代謝中,含氮有機物與其他有機物一樣,本身沒有太多的害處。但是水體中含量高的時候,會影響PH值、引起異養菌大量繁殖、引起藍綠藻的氾濫等,這都是我們不希望的結果。
而含氮有機物分解後,會帶來NH3的增加。所以,魚缸裡都會使用蛋白質分離器把有機物撇除出去,減少含氮有機物的積累。
NH3對生物是有毒害作用的,它進入魚類的血液後,會影響紅血球的攜氧能力,導致魚類供氧不足,魚會表現出呼吸加快、煩躁不安、昏迷等症狀。NH3的毒害作用強弱與PH有關,在酸性環境中,NH3主要以NH4+(銨)的形式存在,不容易透過魚鰓進入血液,其毒性不強。但在海水的鹼性環境中主要是NH3態。NH3的含量超過0.3ppm就會對魚和珊瑚造成傷害。藻類和珊瑚的蟲黃藻可以吸收利用NH3,但是魚缸中的NH3主要還是由硝化細菌處理成NO3-。 NO2-是NH3未完全氧化(這個過程由亞硝化細菌完成)的產物,它會在硝化細菌的作用下繼續氧化,最後變成NO3-。實際測試表明,NO2-對海洋魚類的毒害作用,比對淡水魚類的毒害作用小得多。絕大多數海洋魚類可以耐受很高的NO2-,有些海洋魚類甚至可以耐受數千ppm的NO2-。
珊瑚也同樣如此,這是因為海水中有大量的氯離子,氯離子大大降低了NO2-被魚吸收的可能性。我們很多人認為NO2-對魚和珊瑚有很大毒性,基本上是延續了從淡水魚上獲得的認識。當然,對個別種類的海洋魚,其耐受度確實不高,高於0.3ppm就有可能將其致死,但這種魚類很少。天然海水中的NO2-不會超過0.2ppm,絕大部分海洋水體的NO2-只有0.001ppm以下的水平。
其實市面有不少測試工具可以驗出氨、亞硝酸鹽(NO2)和硝酸鹽(NO3)。但由於氨會快速地轉變為亞硝酸鹽(NO2),所以其實也沒有必要去檢示氨的濃度。但要注意,你必須留意亞硝酸鹽(NO2)的濃度,尤其是一個全新的魚缸;因為通過留意亞硝酸鹽(NO2),你可以更加明白氮化合物循環的進展過程。還有一點,若你的魚缸已經充份發展的話,你的亞硝酸鹽(NO2)濃度將會隱定在一個很低濃度。
除氮技術:
1、換水
最直接的方法,但成本高,除了鹽錢,還有RO機或購純淨水的費用。而且麻煩,每次換水最好不超過總水量的5%,而且要確保鹽已經完全溶解。沒有溶解的鹽會導致珊瑚爛皮,傷害魚類腮葉。
2、活石
著名的柏林法就是靠高品質的活石來同時達到硝化和反硝化過程的,效果可以用神奇來形容。缺點的活石較貴,缸中造流要求較強。但基本上沒有其他副作用,強烈推薦這一辦法。
3、黑白球
一種帶有內循環的封閉容器,白球是反硝化細菌的食物,反硝化細菌在容器中消耗NO3,產生氮氣,達到反硝化目的。但可以處理的水量較少(每秒1-4滴),有可能會腐敗導致翻缸。
4、吸收硝酸鹽的海水生物
許多種海洋生物都有吸收硝酸鹽的能力,它們利用其中的氮進行複雜的化學合成,形成蛋白質和遺傳物質。硝酸鹽主要被微生物(如細菌)和完全利用光合作用合成營養物質的藻類、珊瑚和海葵所吸收。